Climatology
Roghayeh Maleki Meresht; Majid Rezaei Banafsheh Daragh; Behrooz Sobhani; Masood Moradi
Abstract
The aim of this study is simulation and forecasting of maximum temperature and heat waves in Urmia city from 2020 to 2050 in order to predict and reduce the negative effects of a sudden increase in temperature, which is simulated using SDSM software and CanESM2 model And is predicted using the most appropriate ...
Read More
The aim of this study is simulation and forecasting of maximum temperature and heat waves in Urmia city from 2020 to 2050 in order to predict and reduce the negative effects of a sudden increase in temperature, which is simulated using SDSM software and CanESM2 model And is predicted using the most appropriate RCP scenario for the next 31 years. For this purpose, the maximum daily temperature data of Urmia from 1961 to 2005 were obtained from the Meteorological Organization and forecasted. The innovation of this study is using the least error RCP scenario for more accurate prediction. According to the results, RCP 8.5 scenario was selected as the least error scenario for forecasting. According to the results the average maximum temperature in Urmia will decrease from late winter to late spring compared to the base period and in mid-summer there will be a slight increase. In general, during the years 2020-2050, the maximum temperature trend of Urmia will be increasing. According to the results of the Baldi index, The heat waves will be short and maximum four days. One-day heat waves will have the highest frequency and will have a slight upward trend, Two, three and four day heat waves will have a decreasing trend. In general, short-term heat waves are more likely to occur than long-term heat waves. Also, since the detected heat waves often showed the highest frequency in autumn and winter, so the probability of this hazard occurring in cold seasons is higher than warm seasons.
Climatology
vahid safarian zengir; Broumand Salahi; Roghayeh Maleki Meresht; MohammadKia Kianian
Abstract
The aim of this study was to analyze rainfall drought indices to predict and reduce their negative effects in Ardebil province, which involved a descriptive-analytical study in terms of research type. Data were collected using documentary method. Accordingly, the information of mean rainfall and mean ...
Read More
The aim of this study was to analyze rainfall drought indices to predict and reduce their negative effects in Ardebil province, which involved a descriptive-analytical study in terms of research type. Data were collected using documentary method. Accordingly, the information of mean rainfall and mean temperature on a monthly basis in synoptic stations of Ardebil, Germi, Parsabad, Meshkinshahr and Khalkhal were received from the Meteorological Organization in Ardebil province for the period (1996-1996). Dip and Dic software were used to analyze the SPI and CZI indices data in each of the 5 synoptic stations of the province. Drought zoning was then performed in two scales of 6 and 12 months, from IDW interpolation, in ArcGIS software. The innovation of the present study was the use of if-then rules in MATLAB software in combining drought indicators in the field of climatology. The results showed that very severe droughts at the 12-month scale were less than at the 6-month scale, and in all 5 stations studied, the number of moderate droughts was more than severe and very severe ones. Also, the highest frequency of drought was observed in Ardebil city and the lowest in Germi station. Similarly, a comparison of the two indicators displayed that their performance did not differ much; but it turned out that the SPI index, could reveal the number of droughts better than the CZI index.