Behroz Sobhani; Leyla Jafarzade Aliabad; Vahid Safarian Zengir
Abstract
The aim of the current research is to study and predict hazardous extreme temperatures in some cities of central Iran, for this purpose the minimum and maximum temperature data of 15 meteorological stations (cities: Esfahan, Shahreza, Natanz, Nain, Ardestan, Semnan, Shahroud, Garmsar, Damghan, Yazd, ...
Read More
The aim of the current research is to study and predict hazardous extreme temperatures in some cities of central Iran, for this purpose the minimum and maximum temperature data of 15 meteorological stations (cities: Esfahan, Shahreza, Natanz, Nain, Ardestan, Semnan, Shahroud, Garmsar, Damghan, Yazd, Bafaq, Gariz, Meibod, Qom and Salafchagan) were collected for the time period (1999 - 2019) and analyzed using the innovative method of hybrid artificial neural network and ANFIS adaptive neural network model. Finally, Topsis and Saw multi-variable decision-making models were used to prioritize more exposed areas of temperature increase. The results of this study showed that according to ANFIS modelling for predicting station temperatures, the lowest mean educational error and the average error of validation for the minimum temperature, with a value of 0.010 was for the station Yazd and 1.66% for Damghan station. The lowest mean educational error and the mean error of validation for the maximum temperature curve were obtained at 0.016 for Garmsar station and 9.39% for Shahroud station, respectively. The maximum temperature fringe based on the Topsis model of two stations of Garmsar and Bafgh with a percentage of 1 and 0.96, will be in higher priority with increasing temperature. Based on the Saw model, Garmsar and Salafchegan stations with the highest percentages i.e., 1 and 0.98, respectively, were exposed to higher temperatures.
environment
vahid safarian zengir; BATOL Zenali; Leyla Jafarzadeh Aliabad
Abstract
y in Ardabil province analyzed the precipitation data of 30 years from 1987 to 2016. Most of the precipitation occurred on 09/12/1991.Synoptic atmospheric maps of this date at a level of 500 Millibars were prepared by sea level elevation maps, geopotential heights, wind speed and direction, humidity, ...
Read More
y in Ardabil province analyzed the precipitation data of 30 years from 1987 to 2016. Most of the precipitation occurred on 09/12/1991.Synoptic atmospheric maps of this date at a level of 500 Millibars were prepared by sea level elevation maps, geopotential heights, wind speed and direction, humidity, temperature, perceptible water on ground level and blocking (omega), using satellite images from NCEP/NCAR databases which Affiliating to the National Oceanographic Organization of the United States. The research method is a circular environmental approach. The results showed that in addition to the ground and climate conditions that have been effective in causing heavy rainfall during this history, the internal situation with the external pattern, such as the seas around and adjacent to Iran like the Black Sea and the Mediterranean has been affected. The monthly precipitation of Khalkhal station as a region that is more prevalent in the south of Ardebil province and southwest of the Caspian Sea in the three months of the spring season is more than February (1321/8 mm), March (1716.7 mm) and April (1448 mm). The most natural atmospheric hazards affected by heavy rainfall and flood damage in Khalkhal, inland, village, river and agricultural damages occurred during these months.