تحلیل الگوی مکانی آلاینده‌های ذرات معلق فرین در تهران

نوع مقاله : علمی-پژوهشی

نویسندگان

1 استادیار، گروه جغرافیا و برنامه‌ریزی شهری، دانشگاه تربیت مدرس، تهران، ایران.

2 دانشیار، گروه جغرافیا و برنامه‌ریزی شهری، دانشگاه اصفهان، اصفهان، ایران

3 دانشیار، گروه سنجش ازدور، دانشگاه تربیت مدرس، تهران، ایران.

چکیده

مخاطره آلودگی هوای شهرها در قرن حاضر چالش اصلی بسیاری از ‌‌کلان‌شهرهای دنیا از جمله تهران است. در حال حاضر این شهر به سبب شرایط خاص مدیریتی و محیطی واجد شرایطی از آلودگی هوا است که به اعتقاد بسیاری از صاحبظران در مسیر حرکت از مخاطره محیطی به بحران زیست‌محیطی قرار دارد. هدف پژوهش حاضر در گام نخست، نمایش الگوی مکانی فرین‌های ذرات معلق 5/2 و 10 میکرونی و مسیر گسترش آن‌ها در شهر تهران بوده و در نهایت شناخت مناطق آلوده می‌باشد. برای دستیابی به هدف پژوهش روش‌های مختلف تعیین توزیع احتمال وقوع، برای انتخاب روزهای فرین استفاده گردید. در این راستا روش‌های درون‌یابی زمین آماری و جبری جهت ایجاد الگوی مکانی فرین آلاینده‌ها مورد آزمایش قرار گرفت. نتایج حاصل نشان داد که برای تمام روزها و آلاینده‌های ذرات معلق 5/2 و 10 میکرونی روش‌های توابع شعاع محور بهترین نتیجه را داشته است. از لحاظ الگوی مکانی فرین آلاینده‌ها ذرات معلق 10 میکرونی از غرب به شرق کشیده شده و این درحالی است که الگوی مکانی ذرات معلق 5/2 میکرونی از شمال به جنوب کشیده شده است. در روزهایی که دو آلاینده در حد فرین بوده‌اند، آلودگی تقریباً تمام شهر را احاطه کرده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of the Spatial Pattern of Extreme Particulate Materials in Tehran

نویسندگان [English]

  • Raheleh Saniei 1
  • Ali zangiabadi 2
  • Mohamad Shrifikia 3
1 Assistant Professor, Department of Geography and Urban Planning, Tarbiat Modares University, Tehran, Iran.
2 Associate Professor, Department of Geography and Urban Planning, University of Isfahan, Isfahan, Iran.
3 Associate Professor, Department of Remote Sensing, Tarbiat Modares University, Tehran, Iran.
چکیده [English]

In recent century, the air pollution hazard in the cities is a major challenge for the world's metropolises including Tehran. Currently, this city, due to special management and environmental features has the necessary requirements of air pollution and as acknowledged by many experts, its situation is changing from environmental hazard to environmental crisis. The aim of this study is, showing the extreme spatial pattern of Particulate Matter (PM)2.5 and PM10 microns in a first step and its expansion path in Tehran and, ultimately identifying polluted areas. To achieve the above goals, the daily Air Quality Index (AQI) data were collected. The various methods of determining the distribution of probability, was used to select the days of high extreme value. In this regard, geostatistical and deterministic interpolation methods and to make spatial pattern of high extreme values of PM was tested. The findings demonstrate that radial basis function (RBF) interpolation outperformed other methods across all study days and for both PM₂.₅ and PM₁₀ concentrations. The spatial pattern of emissions of PM10 microns drawn from West to East and of northern and northeastern have better spatial pattern of PM2.5while drawn from north to south. On days when two pollutants are at their extreme surround almost the entire city.

کلیدواژه‌ها [English]

  • Air Pollution
  • Particulate Matter
  • Spatial Pattern
  • Extreme Value Analysis
  • Tehran
Asadi, N. and Rashidi, Y. (2019). Comparison and investigation of ground station data with satellite monitoring of airborne particulate matter pollutants in Kerman Province. Master's thesis in Environmental Engineering, Shahid Beheshti University. (In Persian)
Ashrafi, K., Shafiepour Motlagh, M., & Aslmand, A. (2013). Investigation of dust storm trajectories over Iran using numerical modeling and satellite imagery. Environmental Journal, 52, 3–12. (In Persian)
Camilo, F., Giulia, M., Valentina, P., & Bertoldi, P. (2025). Evidence on local climate policies achieving emission reduction targets by 2030. Urban Climate, 59, 102242. https://doi.org/10.1016/j.uclim.2024.102242.
Chang, Y., & Guo, X. (2025). Disparities in the impact of urban heat island effect on particulate pollutants at different pollution stages - A case study of the “2 + 36” cities. Urban Climate, 59, 102273. https://doi.org/10.1016/j.uclim.2024.102273.
Fani, Z, Mouloudi, J. (2010). The Assessment Of Urban Environment On Regulations & Norms: With Emphasis On Air Pollution, Urban Management, 7(24), 51-64. (In Persian)
Ghalamkari, Peyman, & Ahmadi Nodooshan, Mozhgan. (2022). The Relationship Between Landscape Pattern and Dispersion of PM2. 5 in Isfahan City. JOURNAL OF RESEARCH IN ENVIRONMENTAL HEALTH, 8(2 ), 123-135. (In Persian)
Goodarzi, G., & Rasti, R. (2025). The effect of the land use pattern of western area of Tehran on air pollution with the attitude of health buffer. Journal of Environmental Sciences Studies (JESS), 10(1). https://doi.org/10.22034/jess.2024.460388.2260. (In Persian)
Hassanvand, M. S., Faridi, S., Naddafi, K., Bayat, R., Khanizadeh, M., Momeniha‌, F., & Mokammel, A. (2023). Variations of particulate matter in Tehran city and their impacts. Iranian Journal of Culture and Health Promotion, 7(3), 463-471. (In Persian)
Hu, X., Waller, L. A., Lyapustin, A., Wang, Y., & Liu, Y. (2014). 10-year spatial and temporal trends of PM2.5 concentrations in the southeastern US estimated using high-resolution satellite data. Atmospheric Chemistry and Physics , 14 (12), 6301–6312. https://doi.org/10.5194/acp-14-6301-2014.
KARBALAIE, ALIREZA, HOSEINI, SEYED MOHAMMAD, & KARBALAEI, MOHAMMAD REZA. (2018). SYNOPTIC-STATISTICAL ANALYSIS OF OZONE'S (O3) EXTREME DAYS IN TEHRAN. JOURNAL OF GEOGRAPHICAL SCIENCES, 17(47 ), 137-153. (In Persian)
Kaveh, M., Mesgari, M. S., & Kaveh, M. (2025). A Novel Evolutionary Deep Learning Approach for PM2.5 Prediction Using Remote Sensing and Spatial–Temporal Data: A Case Study of Tehran. ISPRS International Journal of Geo-Information, 14(2), 42. https://doi.org/10.3390/ijgi14020042. (In Persian)
Liang, Y., Wang, X., Dong, Z., Wang, X., Wang, S., Si, S., Wang, J., Liu, H.-Y., Zhang, Q., & Wang, Q. (2024). Understanding the origins of urban particulate matter pollution based on high-density vehicle-based sensor monitoring and big data analysis. Urban Climate, 59. doi.org/10.1016/j.uclim.2024.102241.
Mirza Hosseini, H.S., MOHAMMADI, A., & Yekpaei Najaf Abadi, A. (2021). Evaluation of the amount of gaseous pollutants and airborne particles in the internal terminals of Tehran Bus Company. JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 22(12 (103)), 257-271. (In Persian)
Mortazavi-Asl, S. K., Saeidirezvani, N., & Rezaei, M. (2022). Evaluation of the effect of particulate matter and vegetation on the formation of heat and cold islands in Tehran. Journal of Spatial Analysis Environmental Hazards, 9(1), 97-114. https://doi.org/20.1001.1.24237892.1401.9.1.6.2. (In Persian)
Perkins, H. (2017). Air Pollution, Translated by Mansour Ghiyasuddin, Tehran University Press.
Poorshahbaz, H., & Ghavidel Rahimi, Y. (2013). Synoptic-statistical analysis of maximum 10-micron suspended particles in Ahvaz City. Tehran, Tarbiat Modares University. (In Persian)
Virginia, P., Torabi Moghadam, S., & Lombardi, P. (2025). A systematic review of justice integration to climate resilience: Current trends and future directions. Urban Climate, 59, 102250. https://doi.org/10.1016/j.uclim.2024.102250.
Tarmizi, S. N., Asmat, A., & Sumar, S. M. (2014). Temporal and spatial PM10 concentration distribution using an inverse distance weighted method in Klang Valley, Malaysia. Earth and Environmental Science, 18, 1–6. https://doi.org/10.1088/1755-1315/18/1/012048.
Zarei, M., & Yeganeh, B. (2025). Vertical distribution analysis of PM₂.₅ concentration at urban highway intersections using low-cost sensors and unmanned aerial vehicles. Urban Climate, 59, 102243. https://doi.org/10.1016/j.uclim.2024.102243. (In Persian)
Zhang, Z., Zhu, C., Wang, L., & Chen, Y. (2024). Effects of urban renewal on green space: Evidence from airborne particulate matter in a mega city cluster. Journal of Cleaner Production, 438, 140811. https://doi.org/10.1016/j.jclepro.2024.140811.