شبیه‌سازی تغییرات کاربری زمین در بافت‌های شهری با تلفیق رهیافت مونت‌کارلو، منطق فازی و سلول‌های خودکار، مطالعه موردی: منطقه 7 شهر اصفهان

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی دکتری ، گروه شهرسازی، دانشگاه هنر اصفهان، اصفهان، ایران.

2 دانشیار شهرسازی، گروه شهرسازی، دانشگاه هنر اصفهان، اصفهان، ایران.

چکیده

هدف از این مطالعه، شبیه­سازی تغییرات کاربری زمین در بافت‌های شهری با استفاده از تلفیق مدل مونت کارلو، منطق فازی و سلول‌های خودکار در منطقه 7 شهر اصفهان بوده است. روش تحقیق توصیفی- تحلیلی بوده و از نوآوری‌های این پژوهش می­توان به استفاده از رهیافت مونت کارلو، تدارک تعداد بالاتر انواع کاربری‌ها، تعریف قوانین انتقال جامع­تر و استفاده از عوامل و شاخص­های کامل­تر در فرآیند تغییر کاربری­ها اشاره نمود. در این مطالعه ابتدا چارچوب مدل سلول‌های خودکار تلفیقی با منطق فازی و رهیافت مونت کارلو تشریح گردید و پس از تنظیم پارامترهای اولیه‌، این مدل برای شبیه‌سازی تغییرات کاربری اراضی در منطقه‌ هفت شهر اصفهان در دو سناریوی توسعه‌ درونی و پیرامونی و در دو دوره‌ زمانی 1390-1400 و 1400-1410 به‌کار گرفته شد. در نهایت، جهت مقایسه مدل توسعه یافته با مدل‌های سلول‌های خودکار تلفیق شده با منطق فازی و سلول‌های خودکار سنتی، سه شاخص سازگاری، فشردگی و تناسب زمین مورد استفاده قرار گرفت. طبق نتایج تحقیق مدل سلول‌های خودکار تلفیقی با منطق فازی و رهیافت مونت کارلو خروجی رضایت‌بخش‌تری نسبت به دو مدل دیگر داشته است.

تازه های تحقیق

 استفاده از رهیافت مونت کارلو، تدارک تعداد بالاتر انواع کاربری­ها، تعریف قوانین انتقال جامع­تر و استفاده از عوامل و شاخص­های کامل­تر در فرایند تغییر کاربری­ها 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of Land Use Changes in Urban Fabrics with Integration of Monte Carlo Approach, Fuzzy Logic and Cellular Automata, Case Study: District 7th of Isfahan

نویسندگان [English]

  • Alireza Sahebgharani 1
  • Mahmoud Mohamadi 2
1 Ph.D. Candidate, Department of Urban Planning, Art University of Isfahan, Isfahan, Iran.
2 Associate Professor, Department of Urban Planning, Art University of Isfahan, Isfahan, Iran.
چکیده [English]

The aim of this study was to simulate land use change in urban contexts using a combination of Monte Carlo model, fuzzy logic and automated cells in District 7 of Isfahan.The research method was descriptive-analytical, and usage of Monte Carlo approach, application of more land types, more comprehensive transition rules, and more complete factors in the land use change process are of its contribution. In this study first the framework of the automated cell model integrated with fuzzy logic and the Monte Carlo approach was described. Two time periods of 1390-1400 and 1400-1410 were used. Finally, to compare the developed model with the models of automatic cells integrated with fuzzy logic and traditional automatic cells, three indicators of compatibility, compactness and land susceptibility were used. According to the research results of the cellular model combined with fuzzy logic and the Monte Carlo approach had a more satisfactory output than the other two models.

کلیدواژه‌ها [English]

  • Urban Textures
  • Automated Cells
  • District 7 of Esfahan
حسین­علی، فرهاد؛ آل شیخ، علی­اصغر و نوریان، فرشاد (1391)، توسعه مدلی عامل-مبنا برای شبیه­سازی گسترش کاربری اراضی شهری (مطالعه موردی: قزوین)، مطالعات و پژوهش­های شهری و منطقه­ای، شماره 14: 1-22.
حسینی، مریم؛ کریمی، محمد؛ مسگری، محمدسعدی و حیدری، مهدی (1395)، طراحی و پیاده­سازی یک سیستم یپارچه مدل­سازی تغییر کاربری اراضی شهری، نشریه تحقیقات کاربردی علوم جغرافیایی، شماره 40: 69-91.
داداش­پور، هاشم و جهانزاد، نریمان (1394)، شبیه سازی تغییرات آتی کاربری زمین بر اساس الگوی بهنۀ اکولوژیک در مجموعۀ شهری مشهد، پژوهش­های جغرافیا و برنامه­ریزی شهری، شماره 3: 343-359.
شهر و خانه (1383)، طرح تفصیلی مناطق 7 و 8 شهر اصفهان، شهرداری اصفهان.
ضیاییان فیروزآبادی، پرویز؛ شکیبا، علیرضا؛ متکان، علی­اکبر و صادقی، علی (1388)، سنجش از دور، سیستم اطلاعات جغرافیایی و مدل سلول­های خودکار به‌عنوان ابزاری برای شبیه­سازی تغییرات کاربری اراضی شهری (مطالعه موردی: شهر شهرکرد)، علوم محیطی، شماره 1: 133-148.
علی­محمدی، عباس؛ متکان، علی اکبر و میرباقری، بابک (1389)، ارزیابی کارایی مدل سلول‌های خودکار در شبیه‌سازی گسترش اراضی شهری در حومه جنوب غرب تهران، برنامه­ریزی و آمایش فضا، شماره 2: 82-102.
کامیاب، حمیدرضا؛ ماهنی، سلمان؛ حسینی، محسن و غلامعلی­فرد، مهدی (1390)، کاربرد شبکه عصبی مصنوعی در مدل­سازی توسعه شهری (مطالعه موردی: شهر گرگان)، پژوهش­های جغرافیای انسانی، شماره 76: 99-113.
کیانی، اکبر (1383)، شبیه­سازی و ارزیابی کارآیی سنسورهای هوشمند و آتوماتای سلولی در تحلیل کاربری فیزیکی ابر نقشه شهر (مطالعه موردی: کلانشهر تهران)، رساله دکتری، دانشگاه تربیت مدرس.
محمدی، محمود؛ مالکی­پور، احسان و صاحبقرانی، علیرضا (1392)، مدل­سازی گسترش شهر در اراضی پیرامونی با استفاده از سلول­های خودکار و فرآیند تحلیل سلسله مراتبی (مطالعه مورد: منطقه 7 اصفهان)، مطالعات و پژوهش­های شهری و منطقه­ای، شماره 18: 175-192.
Al-Ahmadi, K; See, L; Heppenstall, A; Hogg, J, (2009), Calibration of a fuzzy cellular automata model of urban dynamics in Saudi Arabia, Ecological Complexity, 6(2): 80-101.
Ali Mohammadi, A; Natkan, A.A; Mir Bagheri, B, (2011), Evaluation of Cellular Automaton Models in Urban Land Expansion in the Southwest Suburban Area of Tehran, The Journal of Spatial Planning, 2: 82-102.
Al‐Kheder, S; Wang, J;; Shan, J, (2008), Fuzzy inference guided cellular automata urban‐growth modelling using multi‐temporal satellite images, International Journal of Geographical Information Science, 22(11-12): 1271-1293.
Anas, A, (1994), METROSIM: A unified economic model of transportation and land-use, Alex Anas; Associates, Williamsville, NY.
Benenson, I.,; Torrens, P. M. (2004). Geosimulation: Automata-based modeling of urban phenomena: John Wiley; Sons.
Clarke, K. C; Gaydos, L. J, (1998), Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore, International Journal of Geographical Information Science, 12(7): 699-714.
Clarke, K. C; Hoppen, S; Gaydos, L, (1997), A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area, Environment and Planning B: Planning and Design, 24(2): 247-261.
Dadashpoor, H; Jahanzad, N, (2016), Simulation of Future Land Use Changes Based on an Ecological Optimal Pattern in Mashhad Metropolitan Area, Geography and Urban Planning Research, 3:343-359.
Deal, B; Kim, J; Hewings, G; Kim, Y, (2013), Complex Urban Systems Integration, Advances in Spatial Sciences.
Dietzel, C; Clarke. K, (2006), The effect of disaggregating land use categories in cellular automata during model calibration and forecasting, Computers, environment and urban systems, 30(1): 78-101.
He, C; Okada, N., Zhang, Q; Shi, P; Li, J, (2008a), Modelling dynamic urban expansion processes incorporating a potential model with cellular automata, Landscape and Urban Planning, 86(1): 79-91.
He, C; Okada, N; Zhang, Q; Shi, P; Zhang, J, (2006b), Modeling urban expansion scenarios by coupling cellular automata model and system dynamic model in Beijing, China. Applied Geography, 26(3): 323-345.
Hoseini, M; Karimi, M; SaadiMesgari, M; Heydary, M, (2016), Design and Implementation of Integrated System for Urban Land Use Change Modeling, Journal of Applied Research in Geographical Sciences, 16(40) :69-91.
Hosseinali, F; Alesheikh, A. A; Nourian, F, (2012), Developing an Agent-Based Model to Simulate Urban Land-Use Expansion (Case Study: Qazvin), Urban - Regional Studies and Research Journal, 14: 1-22.
Huang, J; Wu, Y; Gao, T; Zhan, Y; Cui, W, (2015), An Integrated Approach based on Markov Chain and Cellular Automata to Simulation of Urban Land Use Changes, Appl. Math, 9(2):769-775.
Jenerette, G. D; Wu, J, (2001), Analysis and simulation of land-use change in the central Arizona–Phoenix region, USA, Landscape ecology, 16(7): 611-626.
Johnston, R; Shabazian, D; Gao, S, (2003), UPlan: a versatile urban growth model for transportation planning, Transportation Research Record: Journal of the Transportation Research Board (1831): 202-209.
Kadkhodazade, H; Morovati, A, (2013), Supplier Selection by Fuzzy Inference System, Production and Operation Management, (7)2: 113-132.
Kamyab, H; Mahiny, S; Hoseini, M; Gholamalifard, M, (2012), Using Neural Network for Urban Growth Modeling (Case Study: Gorgan City), Human Geography Research Quarterly, 76: 99-113.
Kiyani, A, (2005), Simulatinng and Evaluating the Application of the Smart Sensors and Cellular Automata in Analysis of the City Mega Maps. Doctoral Dessertation: Trabiat Modarres University.
Kumar, S, (2003), Modelling Land Use Land Cover Changes Using Cellular Automata in a Geo-Spatial Environment, International Institute for Geo-Information Science and Earth Observation Enschede, The Netherlands: 6-24.
Lee, S-T; Lei, T-C; Wu, C-W, (2009), Artificial Neural Network and Cellular Automata As A Modeling Simulation for Night Market Spatial Development, Paper presented at the 4th Design, Rigor and Relevance conference of International Association of Societies of Design Research.
Li, X; Yeh, A.G-O, (2000), Modelling sustainable urban development by the integration of constrained cellular automata and GIS, International Journal of Geographical Information Science, 14(2): 131-152.
Li, X; Yeh, A.G-O, (2001), Calibration of cellular automata by using neural networks for the simulation of complex urban systems, Environment and Planning A, 33(8): 1445-1462.
Mohammadi, M; Malekipour, E; Sahebgharani, A, (2013), Modeling Urban Expansion in Peripheral Lands Through Cellular Automata (CA) and Analytic Hierarchichal Process, Case Study of Isfahan’s 7th Municipal District, Urban - Regional Studies and Research Journal, 5(18): 175-192.
Munroe, D. K; York, A. M, (2003), Jobs, Houses, and Trees: Changing Regional Structure, Local Land‐Use Patterns, and Forest Cover in Southern Indiana, Growth and Change, 34(3): 299-320.
Santé, I; García, A. M; Miranda, D; Crecente, R, (2010), Cellular automata models for the simulation of real-world urban processes: A review and analysis, Landscape and Urban Planning, 96(2): 108-122.
Shar-o-Khaneh, (2015). Detailed Plan of Isfahan’s 7th and 8th Districts, Municipality of Isfahan.
Sui, D. Z; Zeng, H, (2001), Modeling the dynamics of landscape structure in Asia’s emerging desakota regions: a case study in Shenzhen, Landscape and Urban Planning, 53(1): 37-52.
Verburg, P. H; Soepboer, W., Veldkamp, A; Limpiada, R; Espaldon, V; Mastura, S. S, (2002), Modeling the spatial dynamics of regional land use: the CLUE-S model, Environmental management, 30(3): 391-405.
Waddell, P, (2001), Towards a Behavioral Integration of Land Use and Transportation Modeling.
Ward, D. P; Murray, A. T; Phinn, S. R, (2000), A stochastically constrained cellular model of urban growth, Computers, Environment and Urban Systems, 24(6): 539-558.
White, R; Engelen, G, (2000), High-resolution integrated modelling of the spatial dynamics of urban and regional systems, Computers, Environment and Urban Systems, 24(5): 383-400.
White, R; Engelen, G; Uljee, I, (1997), The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics, Environment and Planning B: Planning and Design, 24(3): 323-343.
Wu, F, (1998a), An experiment on the generic polycentricity of urban growth in a cellular automatic city, Environment and Planning B: Planning and Design, 25(5): 731-752.
Wu, F, (1998b), Simulating urban encroachment on rural land with fuzzy-logic-controlled cellular automata in a geographical information system, Journal of Environmental Management, 53(4): 293-308.
Yeh, A.G-O; Li, X, (2003), Simulation of development alternatives using neural networks, cellular automata, and GIS for urban planning, Photogrammetric Engineering; Remote Sensing, 69(9): 1043-1052.
Yüzer, M.A, (2004), Growth estimations in settlement planning using a land use cellular automata model (LUCAM), European Planning Studies, 12(4): 551-561.
Zadeh, L.A, (1965), Fuzzy sets, Information and control, 8(3): 338-353.
Zeaian Firouzabadi, P; Shakiba, A; Matkan, A.A; Sadeghi, A, (2010), Remote Sensing (RS), Geographic Information System (GIS) and Cellular Automata Model (CA) as Tools for the Simulation of Urban Land Use Change – A Case Study of Shahr-e-Kord, Environmental Science, 1: 133-148.